Talking About Systems: looking for systems in the news (and not)
Email this Post Email this Post

Archive for the ‘Systems Thinking Practice’ Category

Shifting Patterns

Stories.  We love them. They’re our most ancient form of education. And yet there’s often a mismatch between the stories we love to read to children and the way the world actually works.

It comes down to plot lines. Most children’s stories tend to feature some sort of straight line, often starting with a problem, followed by a reaction, and ending with a resolution. It’s one, linear pattern of connection:

A →B →C

A causes B, and B causes C. End of story.

Screen Shot 2018-04-03 at 3.29.53 PM

Think about the children’s book I Know an Old Lady (by Rose Bonn and Alan Mill). It’s about an old lady who swallowed a fly:

I know an old lady who swallowed a spider

That wriggled and wriggled and tickled inside her.

She swallowed the spider to catch the fly.

But I don’t know why she swallowed the fly!

I guess she’ll die!

The old lady goes on to swallow a mouse, a cat, a dog, a cow, and, finally, a horse — all to catch a pesky little fly. What happens when she swallows the horse? “She dies, of course!”

Ok. So it’s not A →B→C, but A→ B→ C → D→ E→ F → G. End of story.

The story is dark, hilarious and a one-way pattern of connection, that is, a long, straight chain of events. Many things in a child’s life do happen in a straight line of cause-and-effect: turn up the volume on the TV and the sound increases. A causes B. Done.

But cause-and-effect is not always straight. Indeed it can be loopy, web-like, cascading.

(Hang in with me now. We’re going to enter the field of systems thinking. It may sound abstract but it is really practical stuff that is leading the way to solving some of the world’s most pressing problems*).

Let’s look at the loopy kind. In If You Give a Mouse a Cookie, a best-selling children’s story by Laura Joffe Numeroff (illustrated by Felicia Bond), the mouse wants a cookie, then a glass of milk and by the end of the story, he wants another cookie. Here’s how my eight-year-old nephew drew the chain of events in Numeroff’s story:

Drawing by Bradley Booth

Unlike the Old Lady who swallowed that fly, this closed loop of cause and effect, feedsback on itself to amplify change. Even the youngest readers intuitively know that the story could go on forever and if left unchecked, the mouse is going to want more and more cookies. When we understand how reinforcing feedback loops work, for example, we see how events build on one another — and how a small change can “grow” into larger and larger consequences as the pattern of connections loops and loops around. Children encounter these reinforcing feedback loops everyday. Think of mean words on a playground, rising noise levels on the bus ride home or the spread of a rumor.

Young children can learn to “close the loop” and take advantage of reinforcing feedback. Think about saving money in the bank. It doesn’t take a math whiz to appreciate compound interest, which Albert Einstein once called “the most powerful force in the universe”: An increase in the amount of money in the bank increases interest payments. An increase in the interest payments compounds the initial increase of the amount of a child has in the bank. It’s not a far leap for kids to harness that same time of reinforcing feedback to grow, for instance, kindness in the classroom.

While reinforcing feedback loops act as engines of growth and decline, another closed loop of cause and effect — balancing loops — self-regulate and dampen change. By its very nature, balancing feedback works to brings things to a desired state and keep them there. Sometimes this is good (e.g. helping to keep a system in balance) and sometimes this is why we feel stuck.

Image courtesy of World Watch 2017 State of the World Report

Image courtesy of World Watch 2017 State of the World Report

When we understand balancing feedback, we understand that predator-prey relationships in nature are not one-way (where the predator simply eats the prey), but rather is made up of a closed loop of cause and effect, with births and deaths of one species affects the population of the other.

Closer to home, when we understand balancing feedback, we stop using our thermostat like a gas pedal, increasing or decreasing the temperature to suit our moment-by-moment needs. Rather we let the internal feedback structure do its work, allowing the temperature to self-adjust to a desired temperature. (Indeed we live on a planet controlled by balancing feedback loops but that is another post!)

A child who understand the basic idea of balancing feedback has a better understanding why things get stuck, and what they can they do about it. Let’s use the example of a messy room and a child that is doesn’t want to clean it. Throughout the week, the parent may reminds him: clean up your room! The child on the other hand, is otherwise occupied. By the end of the week, the parent’s frustration is boiling over. Finally, the parent threatens a week of no TV or depending on the age, no cell phone and the child relents. When he shows his clean room, the parent is happy. But the next day, with the pressure off, he slowly reverts to his old habits and the room becomes messy again. Mid-way through the week, the parent’s frustration builds again, this time with more pressure. The room clean up roller coaster continues.

(What to do? One way out of this dilemma is for the parent and child to sit down together, and draw simple diagrams showing the situation as one sees it. Then together they can figure out how to change the pattern.)

Growing Little Systems Thinkers

Back to children’s stories. Don’t get me wrong. I love stories with all kinds of plot lines. I’ve written two myself. But a diet of all one-way plots doesn’t prepare our children for the diversity of real world patterns they will encounter.

So what can you do?

Encourage your little readers to be pattern detectives.

Encourage them to draw the patterns they see in stories. Then look beyond books to the cause-and-effect patterns they see on the playground, around the dinner table or on the front page of the newspaper.

By seeing these patterns, they will be more likely to stop jumping to blame a single cause for the challenges they encounter be curious about the multiple, interacting forces driving events and often, unintended impacts. As an added bonus, when children (and adults for that matter) see patterns, they are more likely to be able to understand them and when needed, to change them. (For an example with two siblings, read here).

Ask questions to focus on cause-and-effect:

o What happens next? (Keep asking. Sometimes you’ll find a drives b which drives c which loops back to drive more or less of a).

o How is this similar pattern similar to that? When they get older recognizing these patterns helps build a bridge between different disciplines in school. Bridging science and social studies they might ask: How is the growth of the bacteria we’re looking at through the microscope similar to the population growth in a particular region?

Whether we are 7 or 77, when we are aware of these closed loops of cause and effect, we are less likely to react to behaviors produced by them and more likely to be able to understand them and when needed, to change them.

Good Books for Little Systems Thinkers

For an introduction to systems-based stories for little systems thinkers, see the 2018 version of When a Butterfly Sneezes: A Guide for Helping Kids Explore Interconnections in Our World Through Favorite Children’s Stories (2018, updated and revised with a new introduction by Peter Senge). For more on systems thinking, see: www.lindaboothsweeney.com.

More good books for little systems thinkers

Other Useful Links:

Systems Thinking in World folktales: see Connected Wisdom: Living Stories about Living Systems by L. Booth Sweeney.

Causality in science: see the Causal patterns in science work of the Harvard Graduate School of Education.

Causality in children’s nonfiction: see author Melissa Stewart’s blog Celebrate Science (look for “cause and effect” books).

Systems stories in the classroom: Waters Foundation and Creative Learning Exchange (search resources for literature)

PBS Learning Media: see the Systems Literacy Collection

THANK YOU to Gale Pryor, Penny Noyce, Emily Rubin, Melissa Tackling , Eugene Pool and Christine Abely for your thoughtful feedback on this article.

All Systems Go! Becoming a “Systems-Smart” Generation

Illustration: Guy Billout, Art Direction, Milton Glaser. From "Connected Wisdom: Living Stories about Living Systems" by L. Booth Sweeney

Illustration by Guy Billout

Try this: Find a young person between the ages of four and twenty-four. Show them a picture of a cow and ask, “If you cut a cow in half, do you get two cows?” Even the four-year-old will shout, “No way!” Children understand that a cow has certain parts—hearts, lungs, legs, brain, and more—that belong together and have to be arranged in a certain way for the cow to live. You cannot have the tail in the front and the nose in the back.

As adults, it is easy to miss this simple truth: a cow is a complex, living system, in the same way that the human body, a family, a classroom, a community, an organization, or an ocean is. A system is composed of parts and processes that interact over time—often in closed-loop patterns of cause and effect—to serve some purpose or function. Living systems, unlike a collection or “heap of stuff ,” share similar characteristics. In systems, it matters how the parts are arranged. at is why a cow cannot have the tail in the front and the nose in the back. And why a stomach does not work on its own, and the body does not work without a stomach. And systems often are connected to or nested within other systems (for instance, a person may be nested within a family, school, ecosystem, community, and nation).

Make the Shift: Systems Are the Context

Sounds simple, right? But here is the challenge: much of today’s education remains focused on discrete disciplines—for example, math, science, and English. Science is taught in one class. The bell rings. The student moves onto math and then, perhaps, to English—and never the twain shall meet. Such a fragmented approach reinforces the notion that knowledge is made up of many unrelated parts, leaving students well-trained to cope with obstacle-type or technical-based problems but less prepared to explore and understand complex systems issues. In medicine, for example, obstacle-type problems are those that can be clearly targeted and fixed, such as a broken arm or an acute disease, like appendicitis. A systems approach is more effective for chronic and complex diseases, such as diabetes, where the interaction of factors—lifestyle, family history, environment, etc.—also plays a role.

Issues such as climate change, economic breakdowns, food insecurity, biodiversity loss, and escalating conflict are matters not only of science, but also of geography, economics, philosophy, and history. They cut across several disciplines and are best understood when these domains are addressed together. Students and adults must be able to see such important issues as systems— elements interacting and affecting one another. In the case of climate change, a systems view shows the link between politics, policy (for example, legislation related to carbon emissions and deforestation), the natural sciences (particularly forests, which help stabilize the climate by absorbing heat-trap- ping emissions from factories and vehicles), and a person’s own consumption habits. Without a systems view, the complexity can be daunting, and the result is often policy resistance or, worse yet, polarization and political paralysis.

The excerpt above is from an article I recently wrote for World Watch Institute’s 2017 State of the World Report. For the complete article, click here.

Thank you to Draper L. Kauffman Jr., author of Systems I: An Introduction to Systems Thinking, for your inspired cow question, posed now over 30 years ago.

Illustration: Guy Billout, Art Direction, Milton Glaser. From “Connected Wisdom: Living Stories about Living Systems” by L. Booth Sweeney

What does it take to change the world—and are you up for it?

Systems change. That’s a phrase I’m hearing more and more. And I wonder, where our next generation of leaders learn to drive this kind of change, the systems kind, where nothing stands alone and actions leave tracks? Where will they learn to connect the dots, discovering as they do force multipliers among seemingly disconnected issues like education reform, climate change, electoral reform, racism, violence both local and global, and inequities of every kind, among other pressing issues of our day?  Web

We know these challenges don’t occur in a vacuum.  Climate change displaces people, which exacerbates poverty and conflicts among classes, races, and religions, which makes it harder to stop or reverse climate change, and so on and so on.

To transform systems, we need to make them visible. We need to see how seemingly unrelated things affect one another. We need narratives and visuals that reflect the complexity of our world; and we need to truly understand what it takes to transform and renew systems.

My hope for any anyone who wants to change the world is this: Understand in your bones what Martin Luther King called the “interrelated structure of reality.”  Many, many others have made the same observation.  Wise author, Joseph Campbell, once said:  “People who don’t have an understanding of the whole can do very unfortunate things.” I want us to flip that: People who understand the whole can do very fortunate things!  

As leaders working to create systems change, we need to know the difference between a system and a heap (image from www.lindaboothsweeney.net).

As leaders working to create systems change, we need to know the difference between a system and a heap (image from www.lindaboothsweeney.net).

Here’s the challenge: most of us get that everything is connected to everything else. Yet we often act just the opposite: We act as if we are separate from the natural world in which we live. We inadvertently play whack-a-mole, legislating policies to solve one problem only to cause other problems somewhere else. We design products that serve some practical purpose but simultaneously harm our planet. Just think of the number of road-building programs meant to reduce congestion that have actually ended up increasing traffic, delays and pollution.

In some ways, this shouldn’t come as a surprise. Much of our education remains focused on discrete disciplines (e.g., math, science, engineering) that train students to “solve” problems with highly focused technical skills and no understanding of how their technical solutions impact other problems in what are always tightly interconnected systems.

So, where do you start? Understanding context is key. For me, I get to context by gathering up all the pieces I see, connecting them to each other, and reconnecting them to a larger whole. It’s much like putting together the many different pieces of a puzzle in order to discover a larger picture or meaning than any one piece alone could reveal. This usually means you need to reach across boundaries and across sectors and engage as many voices and differing perspectives as you can.

Whether I’m working with a community, an organization, a school, or even my own family, the result is a greater sense of health and vitality. Indeed, the root of the word health comes from the Old English hǣlth, which is related to the word whole. I’ve seen this over and over, which is one of the reasons why I’ve been at this systems thinking idea for so long.

To truly transform systems, we all need to learn how to embrace ambiguity, to make friends with failure, to understand that our inner journey is inextricably linked to our external success, and to no longer blame a single cause for some outcome. We must learn to look deeper, to look for all those hidden causes that are interconnected and together produce and perpetuate those symptoms or outcomes we don’t like.

And, if you can do all of this with a committed, diverse group of people with a common focus on transforming what Russ Ackoff called wicked messes or my friend and colleague Sara Schley calls painful persistent problems? Your experience and your result will be all the better.

I’m working now on a systems “playbook” for young leaders working to make systems-driven change.  If you’re applying (or interested in applying) an an understanding of complex systems into learning, decision making and design, be in touch.  I’m eager to hear from you.

If you haven’t yet, take a look at: